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Bayesian Model Selection for a Finite Element Model of a
Large Civil Aircraft

IMACO04 Presentation Abstract
F.M. Hemez, A.L. Cundy

Nine aircraft stiffness parameters have been varied and used as inputs to a finite element
model of an aircraft to generate natural frequency and deflection features (Goge, 2003).
This data set (147 input parameter configurations and associated outputs) is now used to
generate a metamodel, or a fast running surrogate model, using Bayesian model selection
methods. Once a forward relationship is defined, the metamodel may be used in an
inverse sense. That is, knowing the measured output frequencies and deflections, what
were the input stiffness parameters that caused them?
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Motivation

e Explore the use of parameter screening and
metamodel design through a Bayesian model
selection framework.

e Demonstrate usefulness of these approaches for
uncertainty propagation and model updating
(computationally intensive techniques, used often
in the aerospace & automotive communities).

e Potentially useful in terms of design; parameters
leading to desirable flutter characteristics can be
identified.
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Overview of the Aircraft Dataset

* Finite element model i
of a large civil aircraft, L
constructed by D. Gége
of the German Aerospace
Center (DLR). iR

e Using this model, a face-centered cubic design
(size 147) was generated relating nine stiffness
parameters to the first natural frequency and six
associated modal displacements.

e A
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The Stiffness Parameters

Parameter Location Type

X,=X0 E/u)selage/wing connection | |
r

X=Xy, zll:)selage/wing connection | |

Xg=X;2 | Wing/pylon connection at I
outer engine (I/r)

X=X;3 Wing/pylon connection at [

min

max

- 6,/5,0 a0 60,
= 8y8;, . Oy , 898y, and ByBys

min

outer engine (/) e

Xs=X,s | Wing/pylon connectionat | 1.,
inner engine (I/r)

=X;; | Wing/pylon connectionat { |,

inner engine (I/r)

X,=Xq Fuselage/HTP connection | I, .
(|/f) ®Mass Paints ;J

Xg=X,; | Wing (I/r) E

X4=X,s | Fuselage/HTP connection | I, | Note that parameters are symmetric
{m about the length of the aircraft, so only

Q;‘ include 9 of them. A
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More on the Aircraft Dataset

Run | Xy [ Xp | Xo [ X [ X5 | Xe | X7 | Xs Run | F1 | M1t [ M2 [ m3 | ma|ms|me
1 ojo|jojlo]J]o|Oo]|]OjO]O 1 15 -37|-15]| 32 | -.08 | .05 | .18
2 11|11 1 1 11111 2 45| -79| .89 | -21]|-77 ] .88 | .75 |
3 1 1 1 11-1]1 1 1] 3 83 1-84| 83 |-42| -16 | .61 | .85
4 [Etc.. 4 Etc.i. |
Y
Each stiffness input parameter set at Finite element model yields the
one of three normalized values, 147 seven output features
combinations in total (according to a (normalized between -1 and 1)
face-centered cubic design). for each of the 147 runs.
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Overview of Model Selection

* A polynomial metamodel is generated for each of
the available input parameter-output feature pairs
using a Bayesian model selection algorithm.

¢ Error of the metamodel is assessed.

¢ The model is then used in an inverse sense with
test data for identification of stiffness parameters.

Use of a metamodel is faster than running a finite
element model (solves one equation as opposed to
many), and hence it may be sampled more extensively.
“ s Los Alamos
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Advantage of Bayesian
Model Selection

o We are able to fit a model having a polynomial form
(main effects and interactions, in our case 45 terms) and
assess how likely each term is to be in the model.

Y=6X+BX,+..+B,X, X, +...

Probability that an effect will occur in the model over the sample space: Frequency

Parameter

¢ We can also assess these models multiple times since

Mcalculatlon time is small. {.7 Al
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How to Q§g the Dataset?

RE “sample from ", Do this “many”
S| 112asetof 921\ | (30,000) times and

e ) o compile statistics about
> the resulting models.

Check how each
model does with the
evaluation set.

For comparison of
individual models,

use the validation set

of 35, which ig always

the same;_A

- = s Los Alamos
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Effect Probabilities

Probabikity that an elfect wil ooélr in the model 'oves the sermble space; Frequenty

Interactions (10-45)

3

Main Effects (1 9)

Pmmem 25

40 s Sampte

K :®+X2+X3+X4+X5+X6+X7 ®+X9+interactions

* Most probable effects for FREQUENCY are effects 1 and 8,
which are the main effects representing the fuselage to wing
connection and the wing stiffness.

e For all features, only main effects were probable. Interactions
had very low probablllty
s Los Alamos
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Effect Probablhtles

MODAL DISPLACEMENT 4
‘Effects: 1,5, 6,8

MODAL DISPLAGEMENT 1 ,
7 .Effects: 1,3, 4,6, 8 §“>:i

7T D
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Mean Relative Errors for the
First Resonant Frequency

Mmomm of VasBhtion Reltive Errors (Based on Never!

Valldatlon J

Histogram of Training end Evahustion Reiative Erors
Pt

Training

025 03 035 X 5
Tratning Emor (Retative, %)

Evaluation |

X : : 04 05
1 - . 04 05 08 07 08 CLl Vatdation Error (Reletive, %)
Evakmtion Eror (Refative, %)

The maximum mean relative error for any of the sets
(Training, Evaluation and Validation) is less than 1%.

i's Los Alamos
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Mean Square Error for the
First Resonant Frequency

Histogram of Training and Evatstion MSE Erors

Histopam of Vetdation MSE Enors (Based on Neverased Rums)

L™ Training | Validation

0?0% 0.01 0013 002 0.025 0.03 0.035 004 0.045 005 0055
Training £rrox (MSE, W)

Evaluation’ 000}

0 008

N 2
01 0.45 0z 025 001 002 D03 0O 005 008 007 008 009
Evatstion Envor (MSE, %) Vatdetion Ertor (MSE. %)

The maximum mean square error for any of the sets
(Training, Evaluation, Validation) is generally less than 0.1%.

7
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Use of Metamodels for Stiffness
Parameter Calibration

e Can think of this in a design sense:

— How to change stiffness parameters for a
desired change in frequency.

e Can also think of this in a model updating sense:

— How to change stiffness parameters to better
match measured frequencies and mode shapes.

In this demonstration, we limit ourselves to
identifying stiffness parameters for an
experimentally measured first frequency.

, —
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Inverse Problem Formulation

e We have 10,000 metamodel formulations relating
the 9 stiffness parameters to the first frequency:

oD = f0xy 4 f0x, ...
: . _ ()
: &= (a)measured —w )2
w(l0,000) — ,31(10’000) X+ 'H§10,000) Xy ...

* We work to minimize a squared error cost function
to determine what the stiffness parameters are for
each of the 10,000 models.

* We then compile statistics on stiffness parameter

yalues (solutions are not unique). AN
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Stiffness Distributions

* Note that all parameters were initialized at their
nominal normalized value (0).

* Parameters were all adjusted within the
expected range of variation (between the
normalized values of -1 and +1).

* For brevity, we examine parameters 1 and 8
(fuselage/wing connection and wing stiffness)
because they were shown to be important to the
first resonant frequency.

é%% UNCLASSIFIED ¢ Los Alamos
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8: Wing Stiffness
5000 T T T T T 7000
o0l 1: Fuse_lage/\/V ing
Connection Stiffness
4000
s000-
3500}
40001
3000
2500 - 30001
2000 2000}
1500 -
10004
1000+
" " i A ! L "
08 -06 0.4 -02 0 02 04 08 08 1
00 Stiftness Parameter 8 Optimized Vakes
J

0 L s s L X L L
0.8 0.6 0.4 -0.2 [ 02 0.4 06 08 1

Stiffness Parameter 1 Optimized Valies
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Calibration Under Uncertainty

* Measurement errors are propagated through
parametric calibration to assess the effect of
experimental uncertainty:

0O = g0 + gy +... —l 02
: € =(a)measured —- ]

) o
2(10,000) _ ﬂl(lo,oom X+ ’3§1o,000)x2 +J l Test

WREre W q.cureq IS NOW sampled from a Gaussian
distribution N(U1oes Ores) With O e/ Hrgst = 1%.

* As before, we then compile statistics on stiffness
x parameter values (solutions are not uniqu
“+ Los Alamos
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Stiffness Distributions

 Experimental uncertainty has a significant effect
on the calibration results:

Calibration With no Calibration With 1%
Experimental Uncertainty Experimental Uncertainty
Parameter | Mean Change | Variance | Mean Change | Variance
The correlation
- - 0, 0,
1 29.47% 7.8% 22.69% 56.2% |ed between
2 3.00% | 106.3% 2.29% | 143.3% parameters 1 & 4
3 3.11%| 118.7% 2.30% | 151.7%| | increases ‘;W:h
experimental
a 9.44% | 55.3% 637% |  935% [ ooy,
5 2.95% | 121.8% 2.36% 148.1%
6 2.92% | 137.7% 2.45% 157.1%
7 2.89% | 134.1% 2.22% 153.2%
8 0.41% | 245.7% 0.11% | 1,401.0%
\ 9 2.86% | 135.6% 2.59% 163.6% é}
" b e
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Stiffness Distribution Results

Distribution of Comectians for Ingnd Parameter 8

- Expertmental Uncertainty, v,.{\n“-ﬂ%
h 8: Wing Stiffness |
3000 4
§ oot
Distritution of Corrections for Input Perameter 1 o000
Wl Ewertmental Uncestainty, o, Au 1%
1ot 1: Fuselage/Wing - )
Connection Stiffness -
1000 4
4 500
3 o
£ oniien B0
® 4 -2 2 4 L] 1
5 oo Irput Parameter Camrection (%)
B B N e
- N =
- 4: Wing/pyloh connection
0 i stiffness at outer engine
i
] -l

20 i3 E]

-10 []
Input Parameter Correction (%)
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Posterior Correlation

* No significant posterior correlation is detected as
the level of experimental uncertainty increases,
except between stiffness parameters 1 & 4:

Posterior Cotretation Matrix %

Parameter 1:
Fuselage/wing
connection.

Parameter 4.
Wing/pylon
connection at

outer engine.
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Multi-Objective Optimization

e The data available to us was
the measured first resonant
frequency and 6 associated
modal displacements.

* Multi-parameter optimization F1 M| M2 | M3 M3 S| Mo
did not work well — a check of |[F' | '] 08| 08) 08} 08 09] %
the correlation coefficient k. 191 09) 971 98) 094 198
matrix reveals why — all M2 10| 08) 08 09]
features are highly correlated, | M3 10j 06| 08 08
and not providing linearly ma| | sYMm. | 10] -09) 08
independent information. M5 10] 09

M6 1.00

¢ Need to have further frequency
data (that is presumably less
correlated) for multi-parameter
_optimization to work.
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Conclusions

» Bayesian model selection provides p_fobabilistic data
about stiffness parameters and how important they are
to various output features.

o Metamodel format means that the model can be
stochastically analyzed very quickly.

s For all output features, there was very little error in the
forward model sense.

¢ Inverse problem formulation yielded a distribution of
input parameters that were within the expected range of
variation. This information could be used in a mode
updating sense or in a design sense.

¢ Multi-parameter optimization could be utilized in future
analyses, provided output features are not highly
correlated.
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Future Work

* Obtain higher resonant frequencies and mode
shapes from the FEA model for the 147
combinations of stiffness parameters.

¢ Couple metamodels with a flutter analysis and
utilize stiffness parameter identification capability
for flutter design purposes.
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